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Abstract In this essay, I critically evaluate components of Michael Weisberg’s

approach to models and modeling in his book Simulation and Similarity. First, I

criticize his account of the ontology of models and mathematics. Second, I respond

to his objections to fictionalism regarding models arguing that they fail. Third, I

sketch a deflationary approach to models that retains many elements of his account

but avoids the inflationary commitments.
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Introduction

Regarding the philosophical literature on models and modeling, Michael Weisberg

writes,

What this new literature about modeling lacks, however, is a comprehensive

account of the models that figure in the practice of modeling (Weisberg 2013, 4).

Simulation and Similarity provides such a comprehensive account of models.

Specifically, the work provides an account of what models are (interpreted

structures), the different types of model structures found in the sciences (concrete

objects, mathematical objects, and computational structures), the types of modeling

(target-directed, generalized, hypothetical, and targetless modeling), the relation-

ships between different types of idealizations (Galilean, minimalist, and multiple

models) and representational ideals (COMPLETENESS, SIMPLICITY, 1-CAUSAL, MAXOUT,
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and P-GENERALITY), the relationship between models and their targets (weighted

feature-matching account of similarity), and an examination of robustness analysis

(parameter, structural and representational robustness). The positions articulated are

original, illuminating, and merit serious consideration and discussion by philoso-

phers of science and scientists themselves. One of its admirable features is that are a

few models used regularly throughout the text—the Lotka–Volterra predator–prey

model, the San Francisco Bay model, and the Schelling model. This gives one a

good sense of how models are constructed, analyzed, and evaluated by building

familiarity with the same ones throughout. Additionally, it can be read by a wide

variety individuals be they philosophers or scientists. But, obviously I came not to

praise, so I turn to issues of disagreement and where more light should be cast.

Weisberg notes that he has offered a ‘‘model of modeling’’, he writes, ‘‘But just

as in a representation of any other complex phenomenon, philosophical analysis will

necessarily be partial and incomplete’’ (Weisberg 2013, 6). As such, it will only be

similar to the phenomena in certain degrees and in certain respects; it will abstract

and idealize possibly distorting the target for various purposes. However, this

implies that his account may be but a semblance of scientific practice. Below I

explore just how much distortion is present.

Ontology, models, and mathematics

According to Weisberg, a model is an interpreted structure. He claims we should

distinguish between three types of structures—mathematical, concrete, and

computational. For example, the Lotka–Volterra predator–prey model is partly a

mathematical object, the San Francisco Bay model is in part by a concrete object,

and the Schelling model is in part by a computational structure.1 However, these

models are only objects or structures in part. What structures lack which models

possess is an interpretation (Weisberg 2013, 15). An interpretation is what he terms

a construal which includes an assignment, an intended scope, and fidelity criteria.

The modeler stipulates what parts of the structure or object denote which parts of

the target. Of course, not every property of the structure denotes some property of

the target nor are all properties of the target denoted by some property of the

structure. Additionally, they implicitly or explicitly specify fidelity criteria for the

model to adequately represent target system’s ‘‘surface’’ properties (dynamic

fidelity) or ‘‘deep’’ causal structure (representational fidelity).

Consider one of Weisberg’s chosen models, the Lotka–Volterra predator–prey

model. Suppose that V is prey abundance, P is predator abundance, r is the rate of

1 Objects and structures are different if recent philosophy of mathematics is correct. Following Zermelo,

we can define the natural numbers as 0 ¼ ;; 1 ¼ f;g, 2 = ff;gg, and more generally n ¼ fn� 1g.
Following von Neumann, we can define the natural numbers as 0 ¼ ;; 1 ¼ f;g, 2 = f;; f;gg, and more

generally n ¼ f0; 1; . . .; n� 1g. It follows that on first proposal that 2 62 4 and on the latter 2 2 4

(Benacerraf 1965). Mathematical structuralists note that both proposals satisfy Peano’s axioms and claim

the natural numbers, and all mathematical structures, are not objects—which objects?—but ‘‘positions’’ in

a pattern (Resnik 1997; Shapiro 1997; Hellman 1989). Following Weisberg, I will speak indiscriminately

between objects and structures even if they are importantly different.
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increase of the prey independent of the predator, a is the capture rate of prey by

predator, b is the conversion efficiency rate of prey captured by predators into new

predators, and q is the mortality rate of the predator independent of the prey. If

we make further assumptions regarding the functional form of the equations, we can

then represent our predator–prey as follows,

dV

dt
¼ rV � aVP ð1Þ

dP

dt
¼ baVP� qP ð2Þ

On his view, we have provided an assignment to a mathematical object which can

be similar to a target system or type of target system. Note that (1) and (2) do not

describe a token or type of predator–prey system. They describe the model. The

model, the interpreted mathematical structure, if it is an adequate representation,

resembles the target system in accordance with the fidelity criteria. Weisberg is very

clear on this point. He writes,

When we talk about models, write about them, or show a picture or diagram,

we are employing a model description. These descriptions must be

distinguished from the models themselves (Weisberg 2013, 33).

As another example,

Equations or other kinds of statements specify mathematical objects and these

objects satisfy their descriptions. However, unlike in the case of concrete

models, mathematical models can be studied and manipulated only via their

descriptions. While the Lotka–Volterra model itself is not a set of equations, it

can be studied only through proxies such as these equations. This is probably

the main reason that scientists often informally refer to equations as models;

their attention is focused on these equations (Weisberg 2013, 37).

The first question I have concerns whether the distinction between types of

structures mentioned above is really substantive. Relational structures consist in a set

of objects with relations on them. So, if models are relational structures, then a model

M would be an ordered pair of objects D and relations R; M ¼ hD;Ri. In the three cases

above, we have relational structures which differ with regard to the objects or relations

included. A mathematical model takes a mathematical object like the real numbers and

defines a set of mathematical relations, e.g. functions, on them. These functions are

what are captured by equations like (1) and (2). A concrete model is a set of concrete

objects with ‘‘physical’’ relations on them which include the intrinsic and extrinsic

properties of interest. Finally, a computational model is a set of states and a set of

procedures/algorithms, e.g. transition rules, defined on them. There is a straightfor-

ward unity amongst models. They are interpreted relational structures.

Weisberg never examines whether models are interpreted relational structures.

This view does not imply concrete models are of interest only because of their

mathematical properties nor denies that we ‘‘compare models to targets in structural,

behavioral, and other non-obviously mathematical ways’’ (Weisberg 2013, 21). It
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would still be true that ‘‘concrete models are much richer in properties than just the

mathematical ones’’ (Weisberg 2013, 21) since there is no restriction on what

R includes if D is a set of concrete particulars.2 He might think that the above

proposal conflates how mathematical and computational models explain.

However, I think it is important to distinguish between these mathematical

models and computational models because of how they are used in giving

scientific explanations. When one invokes a computational model to explain

some phenomenon, one is typically using transition rules or algorithm as the

explanans… Conversely, in the types of models I am calling mathematical

models, the mathematical structure, or relationship among variables, carries

the explanatory power (Weisberg 2013, 20).

But, there is no such difference. In a computational model, transition rules describe

the relations between states. Likewise, in a mathematical model, equations describe

the relations between variables. An explanans can be constructed from the states and

variables or from the rules and equations. Computational and mathematical models

are in the same boat. All of this is a friendly amendment to Weisberg’s approach

since it is says models really are interpreted relational structures.

Nevertheless, with or without my friendly amendment, there is a serious worry

lurking behind Weisberg’s proposal. Consider the following passage.

For my purposes, I need only to assume that it makes sense to talk about

mathematical objects such as functions and state spaces and that these objects are

identical to the equations we use to describe them. Any metaphysical theory,

even a highly deflationary one, that allows us to make sense of these aspects of

mathematical practice is sufficient for my purposes. Which of these theories is

true, of course, is a much more complicated issue (Weisberg 2013, 29).

First, given that Weisberg claims models and model descriptions are distinct, he

cannot accept a deflationary view where models are just model descriptions (e.g.

equations). Second, if models are distinct from model descriptions and there are

mathematical models, then Weisberg is committed to the existence of mathematical

objects and hence mathematical realism. Now, one might think ‘‘So what?’’; why

bind one’s position on models and modeling to a compatibility with mathematical

anti-realism? The third worry is that Weisberg’s mathematical realism is

incompatible with his account of the model-world relation.

Consider a simple model of a pendulum,

m
d2x

dt2

� �
¼ � mg

l

� �
x ð3Þ

where x is position, m is mass, g is the gravitational constant, and l is the length of

the pendulum. For a pendulum with very little friction, with small angles of swing,

and very short time intervals, there are fidelity criteria such that this model can

2 It is not clear what is means for a concrete particular to have a mathematical property. Suppose Jill is

first in line and Jack is second. Does Jill have the mathematical property being first in line? Or, is this

simply a spatial relationship between Jill and Jack represented using mathematical concepts Field (1980)?
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adequately represent a pendulum’s oscillations. However, on Weisberg’s view, this

requires that the interpreted mathematical object and pendulum are relevantly

similar and this is subject to what I will call Hughes’ Objection. R.I.G. Hughes

wrote,

…[W]e may model an actual pendulum, a weight hanging by a cord, as an

ideal pendulum. We may even be tempted to say that in both cases the relation

between the pendulum’s length and periodic time is approximately the same,

and that they are in that respect similar to each other. But the ideal pendulum

has no length, and there is no time in which it completes an oscillation. It is an

abstract object, similar to material pendulums in no obvious sense (Hughes

1997, 330).3

An object can have the properties periodic time and length only if it is

spatiotemporal. Mathematical objects are not spatiotemporal. Hence, they cannot

have the properties periodic time and length. Two objects are similar only if they

share properties. Mathematical objects and pendulums cannot share the properties

periodic time and length. Therefore, they cannot be similar with respect to periodic

time and length.

It is important to note two things. First, this argument generalizes to any target

which is a concrete particular and model which is in part a mathematical object

where the properties are had only by concrete particulars. Second, note the the

account of similarity as sharing of properties is presupposed by Weisberg’s own

weighted feature matching account of similarity. Expressions in his account include

Ma \ Ta and Mm \ Tm; the intersection of model attributes Ma and target attributes

Ta and the intersection of mechanisms between Mt and Tt. If no attributes or

mechanisms are shared, then his measure Sðm; tÞ ¼ 0 since the numerator jMa \
Taj þ jMm \ Tmj ¼ 0 and the relevant terms in the denominator

jMa � Taj þ jTa � Tmj þ jTm � Taj 6¼ 0. That is, there attributes and mechanisms

the model has the target lacks and vice versa. Thus, the claim, ‘‘This actual

pendulum is similar in its period and length to a model described by (3)’’ is false and

necessarily so.4

Weisberg could respond to this argument in three ways it seems to me. First, he

could claim that mathematical objects and structures are not abstract but concrete

(Field 1980). If mathematical entities are concrete, they could possess properties

like periodic time and length. However, this is unlikely to work. Consider the claim

that the set of real numbers is larger than the set of natural numbers even though

both sets have an infinite number of members. If concrete particulars are its

3 Hughes to my knowledge is the first philosopher of science to press this objection. However, Thomson-

Jones (2010) has offered it as well with Toon (2012) following suit. The first philosopher, of course, was

Plato. In Book VII of The Republic, ‘‘[The] science [of geometry] is in direct contradiction with the

language employed by its adepts…. [They talk] of squaring and applying and adding and the like …
whereas in fact the real object of the entire subject is … knowledge … of what eternally exists, not of

anything that comes to be this or that at some time and ceases to be’’ (Cooper and Hutchinson 1997).
4 Mathematical objects, if they exist, can have non-essential properties. For example, suppose my

favorite number is 76. If the number 76 has the property of being Jay’s favorite, it has it accidentally not

essentially. Some might object that this is a ‘‘Cambridge property.’’ Fair enough.

Semblance or similarity?

123



truthmakers, then there must be lots and lots and lots of truthmakers (i.e. their

cardinality must be least 2@0 !). As philosopher of mathematics Stewart Shapiro

writes,

…[I]t seems reasonable to insist that there is some limit to the size of the

physical universe. If so, then any branch of mathematics that requires an

ontology larger than that of the physical universe must leave the realm of

physical objects if these branches are not to be doomed to vacuity. Even with

arithmetic, it is counterintuitive for an account of mathematics to be held

hostage to the size of the physical universe (Shapiro 1997, 86).5

Second, Weisberg could respond to Hughes’ Objection by denying that

mathematical objects exist. This fares no better than the first response. Necessarily,

if x and y are similar, then x and y exist. Hence, if it is true that mathematical objects

do not exist, then it is false to claim that mathematical objects are similar to

empirical systems. Thus, Weisberg faces the following dilemma. With respect to

properties like periodic time and length, either there are models which are

mathematical objects in which case they cannot be similar to concreta or there are

no models which are mathematical objects in which case they cannot be similar to

concreta.

A third response is this. Hughes’ Objection depends on the claim that

mathematical objects cannot have the spatiotemporal properties that pendulums

do. However, suppose that the target is represented as a relational structure. For

example, if a our model M ¼ hD;Rii and the target model is M� ¼ hD�;R�i i, then

they can share properties. For example, M and M� can be isomorphic, homomor-

phic, etc. This it seems to me is Weisberg’s best option, and in a different context,

he seems to endorse it.

But how can mathematical and computational models be compared to concrete

targets? What possible similarities do they have? I think this objection can

easily be resolved. Mathematical and computational models, as well as

concrete models in some cases, are compared to mathematical representations

of targets, not the targets themselves. Each state of the target is mapped to

some mathematical space. In simple, dynamical models, the mapping is such

that the major determinable properties (e.g., species abundance, pressure,

time, temperature, etc.) of the target are mapped to dimensions of a state

space, and specific states are mapped to points in this space. Now one

interpreted mathematical object can be compared to another, and we avoid

problems about comparing mathematical properties to concrete properties

(Weisberg 2013, 95).

Still, mathematical and concrete objects still don’t share properties. Consider an

isomorphism between M and M�. There is a function f such that ho1; . . .; oni 2 R if

and only if hf ðo1Þ; . . .; f ðonÞi 2 R�. At best, we have shown that there is a second-

5 In Hartry Field’s nominalization of Newtonian mechanics, he claims we can replace mathematical

objects with space-time points and regions. Whether space-time points and regions are concrete is another

thing since they lack extension, mass, and ‘‘locations’’ (Resnik 1997).
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order property of isomorphism shared between two relational structures. However,

there is no R or R� respectively such that an element of D and D� both have it.

Therefore, even if here are mappings between interpreted relational structures there

are no shared spatiotemporal properties between mathematical and concrete objects.

Additionally, Weisberg is no fan of isomorphism and partial isomorphism accounts

of the model-world relationship. Hence, his account of the model world relationship

cannot rest on such shared second-order properties.6

From here, the path only darkens. One could claim that, at least in the

mathematical case, ‘‘Models are created by their descriptions’’ (Weisberg 2013, 33).

How could writing down an equation create a mathematical object? Likewise, one

could claim that we simply stipulate that elements of mathematical structures denote

features of targets but this seems wholly mysterious. Besides presupposing

mathematical realism, how can we stipulate that a non-spatial, non-temporal object

stands for a concrete one? We can stipulate that an expression means such-and-such

and that an equation represents some target but this is a very different matter.

In summary, Weisberg has committed himself to a form of mathematical realism.

Second, the form of mathematical realism he has committed himself to makes it

well nigh impossible for mathematical models to be similar to target systems. Third,

the most plausible way out of the problem simply pushes it back by claiming that

models are similar to target models but we are left with the same problem with how

target models represent targets.7

Fictionalism

After the ruckus over mathematical objects, one might think that fictionalism about

models looks very appealing. Weisberg is no fictionalist however. Though some of

his criticisms of specific fictionalist positions have force, I am unconvinced that

fictionalism about models in general has been shown false. There are variety of

fictionalist views so let’s consider a few of them.

The first view is the simple fictions account which says that, ‘‘mathematical

models are imaginary systems that would be concrete if they were real’’ (Weisberg

6 Some of his criticisms of isomorphism apply mutatis mutandis to his account. If isomorphism cannot

capture relationships between features of models and targets because it is relation between structures, then

a set-theoretic similarity measure has the same problem since it is between sets (Weisberg 2013,

139–140). Additionally, he worries that there are two many mappings from models to targets (i.e. target

models). But, if modeler’s intentions can pick out the contexually relevant similarities in the feature set,

then they can pick out the contextually relevant mappings.
7 As a radical revision, it would be interesting to see Weiberg’s account coupled with a structuralist

account of mathematics. Mathematical model descriptions would be statements which claim targets

instantiate mathematical structures. There would be worries—e.g. an idealized model could not be

instantiated by a target system. Interestingly, Resnik and Shapiro are both ante re realists accepting that

mathematical structures exist independent of instantiation. However, they think we can recognize simple

patterns amongst concreta thus have a posteriori knowledge of them. Hellman’s version is nominalistic—

it is a ‘‘mathematical structuralism without structures.’’ I am indebted to Elaine Landry for helping me

think through modeling and mathematical structuralism.
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2013, 49). As purported confirmation of it, consider what John Maynard Smith

writes (Maynard Smith 1989, 22),

Imagine a population of replicating RNA molecules. There is some unique

sequence, S, that produces copies at a rate R: all other sequences produce

copies at a lower rate, … A sequence produces an exact copy of itself with

probability Q. If x0 and x1 are the numbers of copies of S and non-S

respectively, then ignoring deaths, dx0=dt ¼ RQx0; dx1=dt ¼ rx1þRð1� QÞx0.

However, since Maynard Smith’s imaginary population of RNA does not exist then

it cannot be similar to any target system of interest. If they are to share properties,

then they both must exist. Hence, they cannot be similar.

Weisberg considers three more detailed accounts of fiction, that of Lewis (1978),

Walton (1990) and Levy (2012). On Lewis’ account, p is true in fiction F if, and

only if, the counterfactual ‘‘p would have been true had F been told as known fact’’

is true in every belief world of the author’s community. A belief world of some

community is any possible world where all the overt beliefs of the community are

true. So, consider a world in which the stories of Sherlock Holmes are told as known

fact and where the beliefs of Sir Arthur Conan Doyle and his compatriots are true.

This is a world in which it is true that ‘‘Sherlock Holmes lives on Baker Street.’’

Hence, it is fictionally true for us. Analogously, Maynard Smith’s RNA model

description is fictionally true insofar as they are asserted as known fact and the

beliefs of Maynard Smith and his compatriots are true in at least one possible world.

Now, like many philosophers, Lewis’ modal realism leaves me with an ‘‘incred-

ulous stare.’’ I simply find it too epistemically costly to accept the existence of non-

actual possible worlds of which we can have no epistemic access.

Kendall Walton’s account of fiction in Walton (1990) is importantly different

from Lewis’ and involves props, principles of generation, and make-believe. In a

game of make-believe, there are props about which participants agree to certain

conventions; i.e. principles of generation. When the props are present they make-

believe certain states of affairs to be the case. For example, if we agree that tree

stumps are bears or images of green slime on a movie screen are a monster, then

when we see those props we make-believe that there are bears or monsters present

respectively. In fact, we may even have quasi-emotions towards them such as quasi-

fear towards the green slime. Moreover, in our respective games, it will be

fictionally true that there are bears or monsters present respectively. Thus, props and

principles of generation generate fictional truths. With respect to Maynard Smith’s

RNA model, presumably the prop is the model description and given the

conventions amongst population geneticists we make-believe that they are true

and they are in the relevant game of make-believe.

Weisberg’s major objection to Roman Frigg’s Waltonian fictionalism (Frigg

2010) is this,

If mathematical models are games of make-believe, they don’t resemble

anything in the physical world because they are scientists’ mental states. Thus,

Frigg has to give us an account of how we can learn about real targets from

games of make believe. This is a nontrivial matter because now we are owed
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an account of how something inside a modeler’s head can be compared with

the properties of a target (Weisberg 2013, 54).

There is a problem here but I think Weisberg has misdescribed it. His worry is how

can a mental representation be similar to a target system. However, Waltonian

fictionalism is not committed to that claim. Rather, the Waltonian fictionalist would

claim that Maynard Smith is taking a certain attitude to a prop; specifically, his

make-believing that the differential equations are true of RNA populations. If this is

so, it is fictionally true that they are true of some RNA population. In effect, the

model doesn’t apply outside of the game to some target, rather, the target enters the

game. Whatever we learn about it, we learn about it in the make-believe.8 The more

serious objection is sometimes models like Maynard Smith’s are explanatory and

predictively accurate. However, if modeling is a form of make-believe, then this

scientific success is make-believe as well. The predictive and explanatory success

due to modeling only occurs in a game. This view invokes a ‘‘incredulous stare’’

too.9

The last fictionalist view Weisberg considers is Arnon Levy’s de re account

(Levy 2012). We make-believe of some actual target that it has properties that it

doesn’t have. So, of some population of RNA, Maynard Smith make-believes that

the model description truly describes it. One problem for this view is that there must

be an object which we make-believe has some property. However, if there is no such

object then we cannot make-believe of it that it has certain properties. Otherwise, it

is not a de re view. The question is then are there objects which modelers posit

which are non-existent? As one example, sometimes philosophers suggest that

population geneticists posit infinite populations and then claim there are no such

things. In response, the de re fictionalist could claim there are populations and we

might make-believe that they are infinite in size.10 Thus, it seems that the de re view

is more credible than either Lewis’ or Walton’s view applied to modeling.

Independent of these particular proposals, Weisberg provides four arguments

against fictionalism about models—the argument from interscientist variation, the the

limited representational capacity of fictions, the inability of fictions view to account

for modeling practice, and variation in the face of modeling practice. Suppose we

consider the Maynard Smith’s equations as a prop for make-believe. Weisberg writes,

As proponents of the fictions account like to emphasize, mathematical

descriptions are extremely sparse. If the mathematical description exhausted

the focal properties of the model, then models would be correspondingly

8 This is reminiscent of Bas van Fraassen’s claim that scientists be ‘‘theoretically immersed’’ in the

scientific world picture (van Fraassen 1980).
9 Toon (2012) has recently defended a form of Waltonian fictionalism. He thinks we compare fictions

and the world. For example, we might compare the periodic time of an make-believe pendulum and actual

pendulum. We can do this, but why? Why think the fiction tell us anything about actual pendulums unless

it actually the model descriptions ‘‘mimic’’ the world? The comparison even if possible is unmotivated.

As with art, why compare fiction and the world unless the former says something true about the latter?

And if this is so, the claims are true of both.
10 I doubt we even need to be fictionalists regarding ‘‘infinite population size.’’ Population geneticists are

claiming that as N gets larger and larger, the difference between actual and expected reproductive success

becomes as small as you like. I owe this point to Michael Strevens.
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sparse in their portrayal of fictional scenarios. Fictions then cease to look at all

like real-world scenarios, militating against the claim that models can be

compared to real systems in a straightforward way (Weisberg 2013, 58).

However, as he notes, every fictionalist assumes there something like Lewis’ belief

world or Walton’s principles of generation. Hence, there is more in a make-believe

than just the prop of equations. Thus, there is no more reason to think that there is

more problematic variation here than there is amongst viewers watching movies or

reading novels. Sure, there will be differences of interpretation but this is true on

Weisberg’s view too. Consider how much debate there is over interpreting

parameters in mathematical models. So, there is variation in both the sciences and

the arts, but neither seems particularly objectionable.11

A second objection is that is the fictionalist cannot account for the different

representational capacities of models. He writes,

Fictionalists regard the Lotka–Volterra model as an imaginary system

composed of a predator population and a prey population. Setting aside, for

a moment, how specific this has to be (are the predators sharks?), the model is

composed of concrete, discrete organisms that interact with one another. But

the equations used to describe the Lotka–Volterra model do so in terms of

populations. This means that no individual organism is represented, in the

mathematics, only populations of organisms (Weisberg 2013, 61).

According to Weisberg, the fictionalist considers ‘‘a model of predation has to be

composed of concrete populations of discrete and distinct individuals’’ (Weisberg

2013, 62). But, their fictional model must be of individual organisms. Individuals

are precisely what the Lotka–Volterra model leaves out. This however misconstrues

fictionalism. The fictionalist makes-believes that the model description is true. Thus,

the model is silent regarding anything not specified by (1) and (2) and the common

beliefs of the relevant community. They need not have any particular beliefs or

make-beliefs about the ‘‘discrete and distinct individuals.’’

A third objection is that Fictionalism distorts modeling practice. According to

Weisberg, modeling often involves indirect representation. One writes down a set of

equations specifying a model and the model is relevantly similar to the target.

However, the Fictionalist makes-believe of some object or objects that it has certain

properties or some prop is true of it. Thus, it is a form of direct representation. First,

making-believing create an opaque context and thus one can make-believe that

p without make-believing that q. So, if we make-believe about some predator and prey,

we haven’t thereby make-believed about sharks, rays, squid, cod, and lobster in the

Adriatic Sea. Second, one might deny that modeling is a form of indirect

representation. For example, one might claim that models are ‘‘statements with

adjustable parameters’’ which when properly specified, then the model can be true of

11 As a problem case, Weisberg thinks that one make-believes regarding a predator–prey system that it

must include make-believing that it has a spatial arrangement (Weisberg 2013, 60). But, this is not given

by make-believing the model description is true. But insofar as one make-believe (1) and (2) are true this

includes make-believing that the system has spatial arrangement given by the term aVP. They are make-

believing the prey and predator randomly associate in accordance with the ‘‘law of mass action’’—they

approximate ‘‘perfect mixing.’’ Thus, the spatial arrangement is given by the model description.
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some target of interest. Models just are abstract or idealized representations and

presumably are a species of familiar genus. Of course, we can study those statements

independently of any application if we like but they insofar as they are representational

they represent targets in the world. Consider an analogy. Pablo Picasso’s Les

Demoiselles d’Avignon can be viewed and appreciated independently of whether this

depiction abstracts or idealizes five prostitutes. But, we might be interested in that art

historical question too.

Finally, Weisberg correctly notes unlike Maynard Smith, modelers do not always

begin with, ‘Imagine that…’ Often they will simply stipulate that certain expressions

stand for objects and properties as Karlin and Feldman do when they write, ‘‘Let’s

x1; x2; x3 and x4 her the frequencies of chromosomes AB;Ab; aB; and ab respectively,

and r the recombination fraction’’ (Karlin and Feldman 1969, 65). When adding cover

for prey in a predator–prey model, Maynard Smith avoids the ‘imagine that’ locution,

Suppose that some number xr of the prey can find some cover or refuge which

make them inaccessible to the predator. Volterra’s equations without damping

then become, _x ¼ ax� cyðx� xrÞ; _y ¼ �eyþ c
0
yðx� xrÞ (Maynard Smith

1989, 25).

But, not every game of make-believe explicitly begins ‘Imagine that…’, ‘Pretend

that…’, or ‘Make-believe that…’ When we watch films, read novels, play games,

etc. only rarely do we begin with such pronouncements. Likewise, we can begin a

game of make-believe by using other locutions like, ‘Let…’ and ‘Suppose….’12

Consider children pretending they are superheroes. One might say, ‘‘Okay, you be

Batman and I will be Superman.’’ This is much like what Karlin and Feldman do

above. So, I do not think modeling practice undercuts fictionalism about models.

I want to make one last point regarding fictionalism. Often Weisberg assumes

that when one engages in make-believe or fiction, this requires that one forms a

mental image of some state of affairs. If so, then one would have to explain how a

mental representation is similar to some object or other (Cummins 1989, Ch. 2).

However, according to the fictionalists above, fiction and make-believe involve

attitudes to propositions. We suppose that, make-believe that, imagine that, etc. If

this is right, then we need not form any mental images regarding what the

propositions are about. We might do this, but it is not required. And, if it is not

required then it is not an objection against fictionalism.

A deflationary approach to models and modeling

Recent philosophical work on models and modeling arose out of analysis of analogy in

science (Hesse 1966; Campbell 2013), and a critique of theories as axiomatic systems

(Suppe 1977; Suppes 1960; van Fraassen 1980). On the one hand, scientists use analogs

to understand and predict features of systems. Waves of water are like sound waves,

12 I don’t think however that whenever someone says, ‘‘Suppose…’’ we are engaging in make-believe.

Likewise, I don’t think saying that models contain assumptions suggests make-believe either any more

than reductio ad absurdums or conditional proofs involve games of make-believe.
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particles are like billiard balls, etc. As Mary Hesse suggested, scientists look for positive,

negative, and neutral analogies between one thing and another. On the other hand, many

philosophers thought that theories could not be axiomatic systems according to the

Received View of Theories. For example, if axiomatic systems are relative to a

language, then an axiomatized evolutionary theory in English would be distinct from an

axiomatized evolutionary theory in French. But, axiomatizing then misses the real

structure of scientific theories. The thought was, what really matters is not the language

in which the theory is expressed but the objects or structures that make it true. Thus, the

Semantic View of Theories claimed scientific theories are metalogical models. More

liberal model-based views appeared too. For example, some claim that scientific

theories are models which satisfy model descriptions and hypotheses which are of the

form, ‘‘M is similar to S in a certain respects and to certain degrees.’’ However, this has

very awkward implications. If theories are pairs hmodel, hypothesesi, then theories are

not truth-apt; they are neither true nor false. And, if theories are neither true nor false,

then they cannot believed, confirmed, make-believed to be true, etc (Chakravartty

2001). My worry with recent literature on models and modeling is that models have

been reified and the ‘‘philosophically irrelevant technical questions’’ that worried Bas

van Fraassen are answered with ‘‘solutions to purely self-generated problems’’ (van

Fraassen 1980, 56). Weisberg’s work keeps contact with scientific practice and its

concerns and is rarely subject to this worry, but I do worry that this is true of some

philosophical writings on model and modeling.

Let me sketch an alternative deflationary approach (Callender and Cohen 2009;

Downes 1992), which utilizes some of the resources Weisberg has provided which I

very much admire. Moreover, like Weisberg, I think scientist’s intentions are

extremely important; my account like Weisberg’s is a ‘‘Generalized Griceanism’’

(Callender and Cohen 2009).13 Scientists use various vehicles to represent the world

including concrete objects, equations, graphs, pictures, etc. These representational

vehicles and the content they express are the models. Weisberg writes,

While the Lotka–Volterra model itself is not a set of equations, it can be

studied only through proxies such as these equations. This is probably the

main reason that scientists often informally refer to equations as models; their

attention is focused on these equations (Weisberg 2013, 136–137).

Here I disagree; I think when a student is asked in a mathematical modeling class to

‘‘write down a model’’ that is what they are doing. We devise those representations

by abstracting or idealizing target systems, which as Weisberg argues are

abstractions from phenomena (c.f. Bogen and Woodward 1988). When representing,

we abstract when properties of the target are not included in the representation and

idealize when we introduce in our representation properties that the target does not

have. Galilean, minimalist, and multiple model idealizations all begin here.

Moreover, scientists use those vehicles to further various ends such as understand-

ing (P-GENERALITY, 1-CAUSAL, SIMPLICITY), anticipating (MAXOUT), and intervening (1-

CAUSAL) in the natural world. These representational vehicles can be more or less

13 Generalized Griceanism is committed to the idea that utterance or sentence meaning can be understood

in terms of speaker meaning and this can be understood naturalistically in other terms.
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accurate; some of them are truth-apt. As a simple example, suppose we want to

represent density-dependent population growth of a population of organisms in

general. We say, ‘‘Let ‘N’ stand for the population abundance, let ‘r’ stand for its

rate of increase independent of other species, and ‘K’ represent the maximum

number of organisms an environment in general permits.’’ We can then use

mathematical formalisms, in this instance, calculus, to represent how this population

in general changes with respect to time,

dN

dt
¼ rN 1� N

K

� �
ð4Þ

This equation represents populations. It does not represent a mathematical object

which represents populations. And that is as it should be since if every mathematical

model description denotes a mathematical model, then inconsistent mathematical

model descriptions would have to describe impossible objects.

Now, we can study this representation and its properties independently of

whether or not it is true or false of populations and their growth rates. Modeling can

be indirect insofar as we analyze and investigate models independently of testing or

evaluating them for their truth. However, we can also determine if they are true, or

as I prefer to say, ‘‘true enough’’ (Elgin 2004; Teller 2012). A model is true enough

when it is imprecisely true with regard to appropriate fidelity criteria. For example,

suppose we estimate our parameters r and K giving us r� and K�and place

confidence intervals on them r� � x1 and K� � x2. As a result, then (4) is

transformed into,

ðr� � x1ÞN 1� N

ðK� � x2Þ

� �
ð5Þ

Our abstract model can be imprecisely true of populations. For various reasons

(Odenbaugh 2005), we may choose to not work with true enough models. False

models can further a variety of aims by providing simple baselines, conceptual

frameworks, etc (Odenbaugh 2005). Additionally, we may simply be interested in

finding the best fitting model through some measure of goodness-of-fit or model

selection criterion. We need not articulate a measure of similarity de novo because

statisticians have already developed them. This is no problem for scientific realism

provided that when we aim to truthfully represent the system of interest we can

show there are true enough models available that could do the work (Wimsatt 1987).

No scientific realist should think that representational accuracy is the only aim of

science. Additionally, we can devise families of models varying parameter values,

functional forms, or representational frameworks and see if there are robust theo-

rems that follow from independent models. That is, we can see if the families

exhibit parameter, structural, or representational robustness. If we can replace

idealizations in models of family with true enough assumptions, we can show that

those idealized models are harmless (Odenbaugh 2011). What about those ideal-

izations as opposed to abstractions? These are properties the model represents the

system as having which it does not. Our models cannot be imprecisely true with

respect to them; if a model implies it has target has property when it doesn’t then it
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is false. However, as Wimsatt (1987) has noted, our representations are ‘‘piecewise

approximations to reality’’; Giere (1988) notes models are similar in certain respects

and to certain degrees. But that is because parts of models can be imprecisely true

even when they are false as a whole. We need not be interested in our model being

imprecisely true or more generally representationally accurate in its entirety.

This the briefest summary of a deflationary approach which recognizes that

models and modeling are ubiquitous. Modelers exploit ordinary practices that are

found not only in the sciences but in the arts and ordinary life. We need not reify

models and modeling; they are extensions of representation and communication

tools we use all the time. And this sketch is in part an extension of Weisberg’s

excellent and thought-provoking Simulation and Similarity.
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