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True Lies: Realism, Robustness, and
Models

Jay Odenbaugh†‡

In this essay, I argue that uneliminated idealizations pose a serious problem for scientific
realism. I consider one method for “de-idealizing” models—robustness analysis. How-
ever, I argue that unless idealizations are eliminated from an idealized theory and
robustness analysis need not do that, scientists are not justified in believing that the
theory is true. I consider one example of modeling from the biological sciences that
exemplifies the problem.

1. Introduction. In this essay, I first present a problem idealizations pose
for scientific realism. Second, I present one way of possibly solving this
problem with the technique of robustness analysis. Third, I argue that
uneliminated idealizations are a problem for scientific realism, robustness
analysis notwithstanding. Fourth, I provide an example of a robustness
analysis and uneliminated idealizations with the work of ecologist Henry
Horn. Finally, I consider objections to the analysis.

2. The Problem. Scientific realism is the claim that scientists are justified
in believing that their theories are true, and antirealism denies this—they
are not justified in believing that their theories are true.1 Some philoso-
phers of science prefer to define ‘scientific realism’ as the claim that the
aim of science is truth and ‘antirealism’ as the claim that the aim of science

†To contact the author, please write to: Department of Philosophy, Lewis and Clark
College, Portland, OR 97219; e-mail: jay@lclark.edu.

‡I would like to thank Rebecca Copenhaver, Eddie Cushman, Ronald Giere, Wendy
Parker, Nicholas D. Smith, and Michael Weisberg for their questions and comments
regarding this article.

1. Note that I did not claim that scientific realism requires that scientists have justified
true beliefs in their theories since that is tantamount to assuming scientists know
(Gettier problems to the side) their theories are true, and that is far too strong.
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1178 JAY ODENBAUGH

is empirical adequacy (van Fraassen 1980). However, scientific realism
defined axiologically could be true even if scientists never came close to
satisfying their aim. Surely scientific realism requires more than an un-
fulfilled but sought after goal. A theory is a set of deductively closed
propositions that explain and predict empirical phenomena, and a model
is a theory that is idealized. Finally, an idealization is a false proposition
that is useful for the purposes of science qua science.2

Confirmed predictions of a theory give one reason to believe that the
theory is true.3 That is, if a theory correctly predicts some phenomenon,
then ceteris paribus this is evidence that the theory is true. Put very simply,
the problem with which this article is concerned just is this. Consider a
model that has a confirmed prediction. First, we know that our model is
false. Hence, the confirmed prediction should not increase our confidence
in our model. Second, without the idealizations, we have no reason to
believe that the nonidealized components of the model imply the con-
firmed prediction. Hence, the confirmed prediction should not increase
our confidence in our model. Probabilistically put, we would say ceteris
paribus that the confirmed prediction increases the probability of the
theory. However, models pose two problems. First, our theory contains
propositions that are false, and hence the probability of the theory is zero.
Second, we can characterize the likelihood of the confirmed prediction
on the nonidealized components only via the idealizations. Hence, the
likelihood of the confirmed prediction on the nonidealized component of
the model is undefined.4 One proposed answer to this problem is that the
idealizations are harmless since we can discharge them—our confirmed
predictions are robust. In this essay, I will examine the property of ro-
bustness with regard to models to see whether it can be used to resolve
this problem.

3. Robustness. Here is how philosopher Bill Wimsatt describes robustness
analysis: “The family of criteria and procedures which I seek to describe
in their various uses might be called robustness analysis. They all involve
the following procedures: 1. To analyze a variety of independent derivation,
identification, or measurement processes. 2. To look for and analyze things

2. The purposes of science or scientific theorizing are at least in part explanation,
prediction, and intervention. These goals may be considered essential or contingent to
the scientific enterprise.

3. Of course, philosophers of science will not simply assert that any confirmed pre-
diction is evidence that a theory is true. The problem will still be present regardless of
how one fine-tunes the sort of prediction that is confirmatory for a theory.

4. The probabilistic problem still exists for Bayesians who reject belief and acceptance
of scientific theories.
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REALISM, ROBUSTNESS, AND MODELS 1179

which are invariant over or identical in the conclusions or results of these
processes. 3. To determine the scope of the processes across which they
are invariant and the conditions on which their invariance depends. 4. To
analyze and explain any relevant failures of invariance” (1981/2007, 2). In
the context of mathematical modeling more narrowly, it is customary to
consider the work of Richard Levins as providing an explicit discussion
of the matter.5 Here is what Levins says about the notion of robustness:
“However, even the most flexible models have artificial assumptions. There
is always room for doubt as to whether a result depends on the essentials
of a model or on the details of the simplifying assumptions. . . . Therefore,
we attempt to treat the same problem with several alternative models each
with different simplifications but with a common biological assumption.
Then, if these models, despite their different assumptions, lead to similar
results we have what we can call a robust theorem which is relatively free
of the details of the model. Hence our truth is the intersection of inde-
pendent lies” (1966, 423).6 As Levins notes, mathematical models in the
biological sciences are highly idealized. For any prediction of a model,
we can ask (and rightfully so) the following question: “Why believe a
model even when its predictions are confirmed?” To see how robustness
works, let us consider a historical example regarding evolutionary theory.

During what historians term the “eclipse of Darwinism,” antiselection-
ists argued that natural selection simply could not produce substantial
evolutionary change; at best it could “weed out” selectively disadvanta-
geous traits, and something else such as inheritance of acquired charac-
teristics, orthogenesis, or saltationism was required for substantial evo-
lutionary change (Bowler 1983). The eminent biologist and statistician Sir
Ronald Fisher articulated models of natural selection in which very small
differences in fitness over generational time could take traits to fixation,
which was contrary to the suggestions of the antiselectionists (Fisher
1930). So, “Is it possible for small differences in fitness to drive traits to
fixation?” is answered yes. However, Fisher’s sketched model assumed the
population to be infinite in size. Given that idealization, why should the
anti-Darwinians have been convinced by Fisher’s argument? That is, why
should they have believed claims that depended on a false assumption

5. Although Levins is considered one of the first scientists to articulate the notion of
robustness, there are a variety of other important scientists including Donald Campbell
who have done so as well. In the philosophical literature, Bill Wimsatt has been a
tireless defender of the importance of robustness. More recently, Michael Weisberg has
provided important analyses of the notion as well (2006).

6. Strictly speaking, one might read Levins as concerned with why one should believe
a prediction when it is derived from an idealized model. In this essay, I am concerned
with the inverse issue—why believe a model when its predictions are confirmed? Ro-
bustness broadly construed is relevant to both issues.
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1180 JAY ODENBAUGH

regarding population size? Fisher provides the answer—the claims did not
depend on a false assumption. It could be shown that there was no ap-
preciable difference to trait fixation between an infinitely large and a large
but finite population. In other words, Fisher showed that trait fixation
by natural selection would occur relatively quickly and was robust over
different assumptions about population size. In so doing, Fisher’s work
along with that of Sewall Wright and J. B. Haldane provided “a clearing
of the ground of the debris of anti-Darwinian criticism” (289–90).7

In order to analyze our problem, I will introduce some technical terms
for expository purposes. Let us suppose that theories, and thus models,
are described by deductively closed sets of propositions.8 Each model Mi

of a set of models M has its propositions divided up into two nonempty
subsets. First, there are the shared assumptions A that are retained over
each element in M. Second, there is the complement of A, AC, that is
subdivided into true and the false propositions, and the idealized as-
sumptions are counted among the latter. Let us call our prediction P and
suppose it concerns the values or configuration of the variables and pa-
rameters. Finally, let us say that two models with A are distinct just in
case they contain logically nonequivalent and assumptions. We canC CA Ai j

now restate our problem. Suppose the following case: (a) P is confirmed,
(b) (A and ) entails P (but A does not entail P), and (c) is idealized.C CA Ai i

Why believe M since we know that it has an idealized and that withoutCAi

it, A would not entail P? Because P does not depend on ; P is robust.CAi

We can now define the concept of robustness (R). Consider a set of
models M p {M1, M2, . . . , Mn}. Each model is composed of a common
A and at least one distinct .CAi

(R) A prediction P is robust over M if for each Mi � M, Mi entails
P.

We are now in a position to articulate the concept of a robustness analysis.
It consists of three steps: articulate a core of assumptions A, devise a
cluster of models M that retain the core and vary the , and for a givenCAi

7. I am indebted to Robert Skipper for a discussion of Fisher’s accomplishments. The
history of this episode is far more complicated than what I have discussed here.

8. I construe theories and models propositionally for ease of exposition, but one could
use the semantic view of theories. For example, for some idealized theory, suppose
that there is a model that makes the sentences of the theory true and that there is a
model that makes the sentences characterizing the confirmed predictions true. Does
the fact that the latter model is embeddable in the former give us reason to believe
that the idealized parts of the theory are isomorphic to the empirical system?
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REALISM, ROBUSTNESS, AND MODELS 1181

M, find any robust Ps (and determine over M*—where —whereM O M*
Ps are fragile).9

The analysis offered in this article involves some simplifications; how-
ever, none of these make things harder for the scientific realist. In fact,
some make the case for realism easier rather than harder. For example,
we are considering only one idealization per model, the relationship be-
tween model and prediction is deductive, we are suppressing auxiliary
hypotheses, and the idealizations are permuted one at a time. In the next
section, I want to consider whether robustness analysis can provide aid
in the defense of scientific realism against idealizations.

4. Realism and Robustness. We can put the issue for the realist as follows:
“If P is robust over M, then idealizations are ‘discharged’; however, are
we justified in believing A?” Here is an example of an argument for
suggesting that even after an idealization has been discharged, we still do
not have a good reason to believe P. Consider the following passage from
Orzack and Sober: “When [Levins] further writes that a particular ‘non-
robust’ theorem ‘cannot be asserted as a biological fact’ it becomes clear
that Levins means that a statement’s robustness, as distinct from its ob-
servational confirmation, can be evidence for its truth” (1993, 538). They
go on to argue that robustness analysis cannot provide evidence for P’s
truth independent of empirical confirmation. One cannot have evidence
that a contingent claim—a prediction P—is true simply from the fact that
it follows from a set of models. Of course, this is correct; nevertheless,
Levins provides his own response to their argument. He writes, “Obser-
vation enters first in the choice of the core model and the selection of
plausible variable parts, and later in the testing of the predictions that
follow from the core model” (1993, 554). Hence, he is not suggesting that
robustness is a “nonempirical” form of confirmation of P. Rather, we
have empirical evidence for A of M, and we have empirical evidence for
P independent of A. However, if we have independent evidence for A,
then the idealizations in one way do not matter. So, I am concerned with
those cases where we do not have empirical evidence for A independent
of evidence for P.

When we do not have independent evidence for A and have the problem
as I have articulated it: robustness analysis is not sufficient to discharge

9. First-order logic is monotonic in the sense that adding propositions to a set does
not reduce the former’s implications. Is robustness “nonmonotonic”? No. First, note
that A does not entail P. Second, it possible for there to be models (A and ) andCAi

(A and ) such that the former entails P and the latter does not. It is with regard toCAj

those latter models that P may be “fragile.” So, the models in M each entail P, but
there are models in M* that do not. Thanks to Eddie Cushman for discussion of this
point.
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1182 JAY ODENBAUGH

worries about our idealizations. Consider the following argument. Sup-
pose for a prediction P and idealization such that ( ) entails P,C CA A ∧ Ai i

we can provide another such that ( ) entails P. Thus, we canC CA C ∧ Aj j

discharge our worry about with . However, either is an ideali-C C CA A Ai j j

zation or not. If it is idealization, then we must find some other assumption
such that ( ) entails P. This must continue ad infinitum unlessC CA C ∧ Ak k

there is at least one that is true. Thus, to discharge our skepticismCA
about our idealizations, a robustness analysis must terminate in an CAj

that is true (or we have evidence that it is true). But, if we cannot discharge
our skepticism regarding our idealizations, then either we do not have a
reason to believe A or a reason to believe P can confirm A. Supposing
that true are not available, then we do not have a reason to believeCAj

A or a reason to believe P can confirm A.
In summary, finding invariant predictions over a set of models does

not solve our problem for scientific realism. Rather, robustness analysis
requires that we have empirical evidence for P independent of A and that
we have empirical evidence that at least one is true. Let me now turnCA
to a case study in robustness analysis—the work of Henry Horn on forest
succession as a Markov process.

5. Robustness Analysis: Markov Models of Forest Succession. Ecologists
are interested in the changes that occur in ecosystems where populations
replace each other: succession. Succession begins when colonizers arrive
in an area and ends when a final, relatively stable state called a ‘climax’
occurs. In primary succession, colonization occurs where no community
is present. In secondary succession, there is an alteration of an already
existing community after a disturbance.

Forests change as the result of perturbations like wildfires. Ecologists
have noted there are patterns regarding these changes. Similar initial com-
munities follow similar successional stages. Dissimilar pioneer commu-
nities arrive at similar final states that resemble stands of virgin forest.
Ecologist Henry Horn writes, “The most dramatic property of succession
is its repeatable convergence on the same climax community from any of
many different starting points. The property is shared by a class of sta-
tistical processes known as ‘regular Markov chains’” (1975b, 196). In light
of this realization, Horn and other ecologists began to model forest suc-
cession as Markov chains.

A Markov chain is a stochastic process in which transitions among
various states occur with characteristic probabilities that depend only on
the current state and not on any previous state. The most important
property of regular Markov chains is that they eventually settle into a
pattern where the various states occur with characteristic frequencies that
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REALISM, ROBUSTNESS, AND MODELS 1183

are independent of the initial states. The final stationary distribution is
thus analogous to the climax community (Horn 1975b, 196).

Horn (1971, 1974, 1975a, 1975b) investigated the forest behind the
Institute for Advanced Study in Princeton, New Jersey. These woods have
several different stands. One stand was never farmed, and the others were
used for various agricultural purposes. However, all had been abandoned
for between 30 and 150 years at the time of the study. Horn thus could
investigate how they recovered from the “temporary indignities imposed
by man or by nature” (1975b, 197) through the process of secondary
succession.

Horn supposes that a forest is a honeycomb of independent cells, where
a cell can be occupied by one and only one tree. Each cell is roughly the
size of a mature tree’s crown. Likewise, trees are replaced synchronously
by a new generation of saplings that arise from their understory. The
probability that a given species will be replaced by another is proportional
to the number of saplings of the latter in the understory of the former.
Thus, we can think of succession as consisting in a tree-by-tree replacement
process. We can estimate the probability that a tree of one species will be
replaced by another tree of some species. From a matrix of these prob-
abilities, we can calculate how many trees of each species will be found
in any stage of succession.

How exactly do we determine such a matrix of probabilities? Horn,
for example, found a total of 837 saplings underneath gray birches
scattered through the institute woods. There were no gray birch saplings,
142 red maples, 25 beeches, and so on, in the understory. Therefore, the
probability that a gray birch will be replaced by another gray birch is

. The probability that a gray birch will be re-Pr (GB/GB) p 0/837 p 0
placed by a red maple is . The probabilityPr (RM/GB) p 142/837 p 0.17
that a gray birch will be replaced by a beech is Pr (B/GB) p 25/837 p

.0.03
We can determine the number of gray birches in the next generation

by finding all the species in the current canopy that have gray birch
saplings in their understory and by multiplying their current abundances
by the probability that they will be replaced by a gray birch. So, we have
the following equation:

GB GB GB
GB(t � 1) p Pr BTA(t) � Pr SF(t) � Pr BG(t)( ) ( ) ( )

BTA SF BG

p 0.05BTA(t) � 0.01SF(t) � 0.01BG(t),

where BTA is a big tooth aspen, SF is sassafras, and BG is black gum.
Generalizing, we can formulate the following discrete model. Let Nj(t)

be the proportion of species j in generation t and pij be the probability
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1184 JAY ODENBAUGH

that an individual of species j replaces a given individual of species i. Let
s be the number of species. So, we have

s

N (t � 1) p N (t)p ,�j i ij
ip1

or in matrix notation with n(t), a row vector of Nj, and P and an s # s
matrix of pij, we have . After m generations, we haven(t � 1) p n(t)P

. As m gets large, n will “settle down” to a stationarymn(t � 1) p n(t)P
distribution n*, which is the solution of s linear equations, .n* p n*P

On the basis of this model, Horn determined the expected stationary
distribution and hence what the climax community should be in the in-
stitute woods. He derived the following model:

n* p A0, 0, 4, 5, 5, 6, 7, 16, 50S,expected

which is a vector of the stationary distribution percentages. Of course,
one of Horn’s assumptions in his model is false; namely, trees do not
replace each other synchronously. If it were true, then trees must die and
be replaced at the very same time. Thus, the discrete model cannot ac-
curately represent the actual course of forest succession. However, the
model and the above vector do tell us what the number of occurrences
of each species over time should be in a given hypothetical cell. Likewise,
if we take a synchronous sample of many cells, we should encounter each
species in proportion to the number of times it occurs in the temporal
sequence for each cell, weighted by the life span of the species (the average
of the life span of each tree of the species; Horn 1975b, 199). Thus, in
order to determine the expected abundances in the stationary distribution,
we must multiply the above vector by the longevity vector

l p A80, 50, 100, 150, 200, 300, 200, 250, 200, 15, 30S
and normalize the products. So, the age-corrected stationary distribution
is

n* p A0, 0, 2, 3, 4, 3, 4, 6, 6, 10, 63S.expected

Finally, the observed vector is

n* p A0, 0, 0, 6, 0, 3, 0, 0, 14, 1, 76S.expected

Horn did not attempt to estimate the goodness of fit of ton*expected

. Nonetheless, it is reasonable to conclude that Horn’s analysis ofn*observed

the Princeton University woods bears a good fit, albeit rough, to the
phenomena. However, Horn does not claim that his model accurately
represents the actual course of succession but only that “the stationary
distribution, when weighted by the longevity of each species, should rep-
resent the actual distribution of species in the climax” (1975b, 200). Hence,
it is claimed only that the expected and the observed climax community
are in rough agreement.
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REALISM, ROBUSTNESS, AND MODELS 1185

What about the false assumptions of Horn’s model? Horn writes, “I
shall routinely make outrageous assumptions, but I shall defend them in
several ways. Some are needed only for analytic convenience and may be
relaxed with no major effect on the result. In some cases a redefinition
of a measurement is all that is needed to bring theory into line with fact.
Astoundingly, some of the assumptions are even true” (1975b, 197). In
the case of the synchrony assumption, Horn argues that the assumption
does not matter—he discharges the assumption in two ways. First, Horn
shows that the idealization of synchrony can be discharged by correcting
it with respect to the phenomena (through weighting the relative number
of occurrences of each species by their longevity). This assumption is used
simply because it allows for mathematical ease. Second, Horn also pro-
vides models that do not assume synchrony as well (206–8). He can show
that some result does not uniquely depend on the idealized assumption
through a robustness analysis, although he does not call it that by name.
Horn implicitly uses a robustness analysis when he claims that “all the
properties of the rudimentary model are shared by a more realistic model
which allows overlapping generations and diverse rates of survival for
different species at each of several stages in their life histories” (198).

What is the more realistic model? Let each species of tree j have a
characteristic and constant mortality rate dj. Thus, the rate of increase

of each species j has a term that is due to deaths and a termdN /dt �d Nj j j

that sums the number of deaths of other trees multiplied by the probability
that species j will replace the other dying trees. So, we have

Nd j
p �d N � d N p .�j j i i ijdt i

Thus, Horn builds asynchrony and varied life spans directly into the
model, as opposed to correcting for it with respect to the phenomena. By
replacing the synchrony assumptions with the asynchrony and varied life
span, what are the relevant robust predictions? The relevant prediction is
the stable stationary distribution, or “climax community,” which is a
prediction from both models (1975a). Horn also reminds us why we do
not always try to build more realistic models: “I can and shall add varied
life spans and synchrony to the next model, but I shall leave the fiendish
empirical computations of such a model for a later paper” (1975b, 201).
Incidentally, this paper with the fiendish computations never appeared.

Let us suppose that Horn successfully discharges the idealization that
“trees die and are replaced at the very same time.” Even so, he does not
conduct a robustness analysis regarding other putative idealizations: the
matrix of transition probabilities is homogenous, there are no time lags,
and there is no density dependence. If he has not shown these idealizations
are eliminable, then his Markov model (or some component of it) should
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1186 JAY ODENBAUGH

not be believed to be true. Moreover, confirmed predictions would not
confirm the model (or some component of it) either. That is, he should
not say, “The most dramatic property of succession is its repeatable con-
vergence on the same climax community from any of many different
starting points. The property is shared by a class of statistical processes
known as ‘regular Markov chains’” (1975b, 196). The fact that Horn’s
model has confirmed predictions does not provide good reason for be-
lieving that secondary succession is a Markov process, given that he has
not eliminated the many idealizations of his model.

Although I have just considered one example from community ecology,
I would suggest that very often in the sciences idealizations are not elim-
inated, and when they are not, scientists are unjustified in believing that
their theories are true. Moreover, robustness analysis can aid them in
eliminating idealizations, but more is required.

6. Objections. I now consider objections.
Objection.—Often we are worried about specific idealizations and not

idealizations per se. But, by my own admission, robustness analysis can
discharge those specific idealizations. This objection depends on a kind
of scientific “contextualism” analogous to that in epistemology—a pos-
sibility may be ignored in one context but not in another. In response,
we worry about idealizations because they are false assumptions. Hence,
I cannot see how one could worry about one idealization because it is
false without worrying about the others since our reason for worrying
about the former applies to the latter with equal force.10

Objection.—“Metaphysical realism” concerning truth and falsity of the-
ories is irrelevant to the sciences. Rather, we should be considering how
similar models and empirical systems are or whether the assumptions of
the models are “approximately true.”11 In response, first, the issues can
be raised within a deflationary theory of truth; it need not be “meta-
physical.” Second, given the absence of independent evidence for the
similarity between the model core and the system, we must infer it from
the similarity of the predictions and the observations. Given the known
dissimilarity between the former, we do not have a reason to believe this
helps. Third, for all the work done on approximate truth, there is simply

10. Sometimes false assumptions are introduced via the mathematics employed. Sci-
entists may bracket these because they concern matters more remote for their day-to-
day concerns. However, on some occasions these mathematical niceties intersect issues
of relevance (e.g., a population growing discretely may not behave the same as one
growing continuously).

11. In discussion at the PSA 2010, Ronald Giere raised this objection or something
quite similar.
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REALISM, ROBUSTNESS, AND MODELS 1187

no approach we can import into the problem. And, even if we could, we
still know that the core and the system are very, very different. How does
the assumption that all trees in a forest die and the new trees are born
at the same time approximate the assumption that their generations over-
lap with birth and death occurring all the while? If two propositions are
logically inconsistent, then in what sense does the former approximate
the latter?12

Objection.—If a model is more predictively accurate than another (e.g.,
the likelihood of the former on the data is greater than the latter on the
data), then surely this is evidence that the former is less idealized than
the latter. A simple example suffices to challenge this claim. Suppose I
am in Oregon and you want to know what sort of weather I am expe-
riencing. One hypothesis is that I am in the United States, and the other
is that I am in Washington state. The former is true and the latter false,
but the latter is more predictively accurate of the weather that I experience.
Truth need not be more accurate than falsity.

In this essay, I have not been sketching a global, or a priori, argument
for antirealism. In fact, nothing I have said is contrary to scientific realism
when idealizations are not present or when they can be eliminated. Rather,
I have been solely concerned with those circumstances when they have
not been eliminated, which I believe to be more frequent than one might
assume. The work of Horn in community ecology was meant as an ex-
ample of this.

7. Conclusion. I have argued that one is justified in believing a theory
only if its idealizations are eliminable, and robustness analysis may not
do this. Moreover, I have provided one example, that of Henry Horn’s
Markov models of forest succession. Although he successfully eliminated
at least one of his idealizations, the confirmation of his predictions was
not sufficient for believing that forest succession is a Markov process.
More generally, if idealizations are generally ineliminable, we are rarely
justified in believing our models. Our truth is nowhere in the lies.
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